Abstract

Vasoactive intestinal peptide (VIP) is a 28-amino acid peptide that has been demonstrated to reside in cells ( = VIP+ cells) of the retinae of various vertebrate species. In an attempt to study the morphology and distribution of VIP+ cells in the retina of the rhesus monkey in more detail, we subjected VIP+ cells observed in cryostat sections or wholemounts rhesus monkey retinae to a quantitative analysis. VIP+ cells were found to reside in the innermost row of the inner nuclear layer (INL) and in the ganglion cell layer (GCL) in similar numbers (estimate: 50 cells/mm2 at 6-10 mm eccentricity each) and only on rare occasions (12% of all VIP+ cells) in varying positions within the inner plexiform layer (IPL). Somata of VIP+ cells were circular and had a mean diameter of 9.1 microns. They gave rise to 1-3 main dendrites, which were usually oriented toward the IPL. Main dendrites ramified widely into thin fibers (dendritic field diameter less than = 1 mm), carrying varicose swellings. The fibers that contributed to one and the same plexus of VIP+ fibers preferred the middle third of the IPL, independent of the positions of the parent somata. A quantitative analysis of nearest-neighbour distances in the retinal wholemount preparation suggested that VIP+ cells in the GCL and in the INL might be distributed according to 2 independent mosaics. A comparison with Golgi-stained material leads to the tentative equation of VIP+ cells with the "spiny" A12 amacrine cell of Mariani ('90). Whereas the low density and large dendritic field size of VIP+ cells might suggest a more widespread function, the varicose dendritic morphology seems to be more compatible with functionally independent dendritic subunits mediating localized effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.