Abstract

Morphologic analysis of 281 species of ammonoids from Great Britain, the North American mid-continent, and the South Urals, at eight successive levels within the Namurian Series (ca. 18 Myr duration), using bivariate plots and principal-components analysis, permits definition of morphologic diversity and identification of morphotypic patterns in time and space. Namurian ammonoids exhibit the same general range of shell geometry that characterizes ammonoids as a whole; there were few post-Namurian innovations in the basic geometry of planispiral ammonoids. Within this overall range of geometry, there are eight preferred morphotypes: two were phylogenetically monopolized by long-ranging forms; three were generalized and reoccur in successive horizons; two others were homeomorphically utilized at different times by different lineages; and one represents morphologic innovation followed by radiation. Such patterns seem to represent combined effects of function, phylogeny, and ecology. Synchronous variations in isolated successions suggest global controls such as eustatic sea-level fluctuations, whereas provincial differences in diversity may be attributable to paleogeographic and ecologic factors. We predict that the Namurian record of ammonoid morphologic diversity and change will be found to be distinctive and differentiable from earlier and later intervals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.