Abstract

AbstractLamellae‐forming styrene/butadiene star block copolymers are studied to investigate the influence of morphology on micromechanical deformation mechanisms and mechanical properties by using transmission electron microscopy and tensile testing. A large homogeneous plastic deformation of polystyrene (PS) lamellae is found in styrene/butadiene star block copolymers on the basis of the new mechanism called thin‐layer yielding. This mechanism depends strongly on the thickness of the PS lamellae. At a critical thickness of PS lamellae of about 20 nm, a transition from thin‐layer yielding mechanism to a crazelike deformation was observed. These new deformation zones are similar to crazes with respect to their propagation perpendicular to direction of external stress and similar to shear bands with respect to an internal shear deformation component of the lamellae in the deformation zones. As a result of our investigations, the mechanical properties of star block copolymers can be understood in correlation with morphology and micromechanical deformation mechanisms. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 683–700, 2002

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.