Abstract

Nylon-nitrile rubber blends having different plastic-rubber component ratios (100/0, 80/20, 70/30, 60/40, 50/50, 40/60, 30/70, 20/80, and 0/100) were prepared by melt mixing technique in a Rheocord-90 at a temperature set at 180°C. The mixing characteristics of the blends have been analyzed from the rheographs. The morphology of the blend was studied using optical and electron microscopies, with special reference to the effect of blend ratio. The micrographs indicate a two-phase system where the component having lower proportions was found to disperse in the major continuous phase. A cocontinuous morphology was observed for 50/50 composition. Mechanical properties of the blends have been measured according to standard test methods. The effect of blend ratio on the mechanical properties like tensile strength, tear strength, elongation at break, stress-strain behavior, and hardness has been analyzed. The influence of the strain rate on the mechanical properties has also been analyzed. The mechanical properties were found to have a strong dependence on the amount of nylon in the blend. It is found that the blends with higher proportions of nylon have superior mechanical properties. The observed changes in mechanical properties are explained on the basis of the morphology of the blend. Various theoretical models such as Series, Parallel, Halpin-Tsai, and Coran's equations have been used to fit the experimental mechanical data. © 1996 John Wiley & Sons, Inc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.