Abstract

A series of interpenetrating polymer networks (IPNs) based on styrenic triblock copolymer, polystyrene-b-polybutadiene-b-polystyrene (SBS), and random copolymer of methyl methacrylate (MMA) and n-butyl acrylate (nBA) were prepared. Corresponding semi-IPNs of the same composition without a crosslinking agent were also synthesized for comparison, and toluene was used as a common solvent to investigate the influence of the presence of the common solvent during the IPN synthesis. Throughout the compositions of IPNs tested, SBS appears to form a continuous phase and the domain size decreases gradually with the increase in SBS concentration. IPNs are found to have finer domain sizes than semi-IPNs because of the higher intermixing between polymers. The microstructure of SBS could be observed using highly magnified transmission electron microscopy (TEM). The dynamic mechanical behavior of the IPNs shows the inward shifting of two glass transition peaks, corresponding to polybutadiene phase of SBS and p(MMA–co-nBA) phase respectively, which indicates enhanced intermixing. The increase in loss tangent of styrene blocks of SBS by the addition of common solvent indicates the structural change of the microstructure in SBS, and this structural change can also be confirmed through the observation of the morphology of SBS-rich phase with higher magnification. © 1997 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call