Abstract

Nanoscale friction properties of graphene produced by Mechanical Exfoliation (ME) of graphite crystal and grown by CVD have been studied by Atomic Force Microscopy (AFM). In particular we have analyzed ME graphene deposited on SiO2 (300 nm oxide) with respect to CVD graphene grown on polycrystalline Ni. We use the AFM in Friction Force Mode (FFM) with force resolution in the nano-newton range and lateral resolution in the nanometer scale. The detailed morphology of the samples, that may strongly influence the friction response at these length scales, has been analyzed by Raman spectroscopy and SEM imaging. We confirm that on ME graphene on SiO2 friction force decreases film thickness (i.e. increasing the effective number of layers that compose the film). Moreover we verify that the same behavior appears for graphene grown by CVD on polycrystalline Ni substrate indicating that this characteristic is a specific mechanical properties of a few layer film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.