Abstract

Hierarchical CuO architectures and monodisperse CuO nanoplates are synthesized via a hydrothermal method with the assistance of ionic liquid 1-butyl-3-methylimidazolium chloride ([Bmim]Cl). The products are characterized by XRD, SEM, TEM, HRTEM, BET, and XPS, and the results indicate that the CuO architectures are composed of nanosheets with exposed (001) facets and the CuO nanoplates are single crystals enclosed by (200) facets. More specially, it is found that [Bmim]Cl serves as an effective template for the synthesis of CuO nanoplates by adsorbing on the (200) planes of monoclinic CuO. When evaluated as anode materials for lithium-ion batteries, CuO architectures possess higher discharge capacity, better cycling stability, and better rate capability than CuO nanoplates. The initial discharge capacity of CuO architectures is 1096 mAh g−1 at a rate of 0.5 C, whereas CuO nanoplates exhibit a lower capacity of 878.4 mAh g−1. Moreover, after 50 cycles, CuO architectures and CuO nanoplates can deliver discharge capacities of 465.6 and 281.6 mAh g−1, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call