Abstract

Thin films of ultrahigh molecular weight poly[(R)-3-hydroxybutyrate] (P(3HB)) were sheared and isothermally crystallized at 100 degrees C. Transmission electron microscopy and atomic force microscopy (AFM) observations revealed that thick fibrous textures, on which lamellae are overgrown normal to the long axis of the fibril, run parallel to the shearing direction. A selected area electron diffraction pattern taken from the fibrils exhibits a fiber pattern of P(3HB) alpha-modification, and the crystallographic c-axis (chain axis) of P(3HB) is set parallel to the long axis of the fibril. In situ AFM observations of enzymatic degradation for the thin film were performed with an extracellular P(3HB) depolymerase from Ralstonia pickettii T1 in a buffer solution. The film surface and thickness became rougher and thinner, respectively, with time after adding the enzyme. During the degradation, fine shish-kebab structures appeared gradually. This fact supports that the amorphous region in the film is preferentially degraded rather than the crystalline one by the depolymerase. The in situ AFM observations also revealed that one thick fibril in the original film is composed of three different states, namely, finer fibril (shish), stacked lamellae (kebab) in edge-on state, and the surrounding amorphous phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.