Abstract

We report on the growth of ultrathin epitaxial Co films on Fe(1 1 0) examined by scanning tunneling microscopy and spectroscopy (STM and STS). At room temperature Co forms pseudomorphic, ideally ordered body-centered cubic (bcc) layers for the first two monolayers as confirmed by atomically resolved STM images. This is in contrast to the related case of Co/Cr(1 1 0) where a superstructure occurs in the second layer. The third monolayer forms a close-packed structure and causes a transformation of the buried second monolayer into a close-packed structure. The Fe(1 1 0) substrate strongly influences the electronic structure of the first Co monolayer as concluded from the dI / dU spectra. This influence is less important for the second monolayer. The measured local density-of-states function for the bcc Co double layer is in agreement with theoretical predictions for bcc Co.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.