Abstract

We describe the synthesis and characterization of aligned carbon nanotubes deposited on quartz substrates by pyrolysis of a xylene–ferrocene mixture at 700 °C at atmospheric pressure. For microscopic characterization of the pyrolyzed products, scanning and transmission electron microscopies and scanning tunneling microcopy were used, and properties of bulk samples were characterized by Raman spectroscopy and x-ray powder diffraction methods. The nanotubes have topological defects and many contain metal particles. Scanning tunneling spectroscopy proved that the nanotubes had a metallic electrical conductivity with resonant states near the Fermi energy. The states are ascribed to the dangling bonds originating from the defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.