Abstract

Cube-like and plate-like Li[Li0.2Mn0.54Ni0.13Co0.13]O2 particles are obtained after treated in LiCl and KCl molten salts at 800 °C, respectively, comparing to the ball-like original particles calcined in air. The oxide treated in KCl molten salt with large specific area of 17.05 m2 g−1 delivers high discharge capacities of 254.1 mAh g−1 and 168.5 mAh g−1 at current densities of 200 mA g−1 and 2000 mA g−1, respectively. In addition, enhanced cycle stability with capacity retention of 94.9% after 80 cycles at charge–discharge current densities of 200 mA g−1 is obtained for the oxide treated in LiCl molten salt with sacrifice of a little capacity. Such electrochemical performance change is proved to be independent of Li+ diffusion coefficient. It appears that the treatment in molten salts can effectively reform the electrochemical performances of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode materials for various applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.