Abstract

The effect of a small amount of ionic groups (interactions) on the morphology and deformation behavior of stoichiometric blends made of poly(styrene- co-styrenesulfonic acid) (SPS) and poly(methyl methacrylate- co-4-vinylpyridine) (MVP) was investigated by Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). FTIR data revealed that intermolecular ion–ion interactions were formed between SPS and MVP polymers, arising from proton transfer from sulfonic acid groups to pyridine groups upon blending. TEM observations show that the morphology of the blends changes from macroscopic phase separation to microscopic phase separation, and to miscibility, with increasing ion content of the blends from 0 to 6 mol%. Correspondingly, deformation behavior of the blends changes from crazing only, to curved and branched crazing, and to crazing plus shear deformation. Such changes in deformation mode can be understood as arising from the morphological changes and the increase of ‘effective’ strand density due to the formation of ionic cross-links in the blends.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.