Abstract
AbstractTransmission Electron Microscopy has been used to study the morphology and defect structure of sharp superconducting transition, high (2-6 ×107 A/cm2) critical current YBa2Cu3O7−δ films on MgO substrates. These were oriented such that the unit cell axes of the film aligned with those of the substrate, with some domains obeying a second orientation relationship rotated by 45° in the plane of the film, i.e. film <110> parallel to substrate <100>. The latter is not expected from simple lattice matching considerations. A strong influence of substrate surface topography on film microstructure was noted, leading to a high density of out-of-phase, low-angle tilt, and other boundaries near the substrate-film interface, which decreased with increasing distance from the substrate. Finally, the effects on film microstructure of two variables of specific interest in our sputtering system were investigated: the thickness of the deposited film, and the temperature at which a high oxygen pressure (500 torr) is introduced after deposition is complete. Increases in film thickness resulted in longer, more widely spaced twins, whereas lower oxygenation temperatures resulted in shorter twins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.