Abstract

Doping cerium oxide with additives is a common procedure that improves stability of cerium oxide-based catalysts. We prepared fluorine-doped cerium oxide samples in the form of inverse catalysts on Rh(111) and compared their electronic, chemical, and morphological properties with fluorine-free CeOX samples. By means of X-ray photoelectron spectroscopy (XPS), we followed the formation of oxygen vacancies and the depletion of fluorine after exposure of CeOXFY to CO and O2 gases at elevated temperatures. According to Ce 3d XPS spectra, the ability to create oxygen vacancies is not altered by fluorine atoms. Our results from low energy electron diffraction (LEED) and atomic force microscopy (AFM) show that fluorine affects mainly the morphology of the layers. Unlike the CeO2 layers, fluorine-doped samples form 3D islands, which are partially rotated with respect to Rh [110] direction due to stretching of the lattice constant caused by cerium oxide reduction. The possibility for creation stable Ce3+ sites wit...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.