Abstract
Two morphologically distinct primary spermatogonial cell types were observed in the frog testis and distinguished on the basis of nuclear characteristics. They have been designated the pale and dark types of primary spermatogonia. On the basis of a kinetic analysis, it is proposed that the pale spermatogonia possess the faculty of self‐renewal as well as that of forming dark spermatogonia; they are thus bipotential stem cells comparable to the undifferentiated type of mammalian spermatogonia. The dark spermatogonia, in contrast, are committed to a single pathway, i.e. to form secondary sperrnatogonia, and can be defined as differentiated or committed elements of the primary spermatogonial population. The number of stem cell spermatogonia and differentiated spermatogonia vary according to the period of the year, as does the rate of turnover of stem cells, with nearly 60–90% of cells temporarily out of the cell cycle at any given time. It is indicated that the spermatogonial population represents a ‘cell renewal system’ in a steady state for appreciably long periods of time, however, changing with season in as far as the magnitude of yield of spermatogonial cells is concerned. This implies that an equality should exist between the rate at which stem cells enter cell‐cycling and the rate at which daughter cells change their morphological identity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.