Abstract

The flake-shaped NiO-yttria-stabilized zirconia (YSZ) particles with nanocrystalline YSZ grains were synthesized using the sucrose-concentrated H2SO4 dehydration reaction, and their microstructure was characterized by scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). To evaluate the properties of the flake-shaped NiO-YSZ particles as the anode materials for solid oxide fuel cells, the reduction temperature of the flake-shaped NiO-YSZ particles and catalytic activity on the methane steam/CO2 reforming reactions of the H2-reduced particles as well as the electrochemical impedance spectra of the YSZ supported symmetrical cells with the electrodes made from these particles were examined in comparison with the mixed commercial NiO-YSZ. HRTEM revealed that the nanocrystalline YSZ was dispersed in the NiO matrix and distributed on the surface of the flake-shaped NiO-YSZ particles. The catalytic performance of the flake-shaped NiO-YSZ particles was better than that of the mixed commercial NiO-YSZ in both steam reforming and CO2 reforming of methane. The symmetrical cell made from the flake-shaped NiO-YSZ exhibited a much lower polarization resistance at the operating temperatures below 800 °C than that made from the mixed commercial NiO-YSZ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.