Abstract

Nanostructured polyketone (PK)/polyamide 6 (PA6) blends can be readily prepared via melt blending technologies and exhibit ultra-high toughness when PA6 is present as the nanoscale phase domains. When PA6 content is 30 vol%, the impact strength of the blends increases from 21.4 kJ/m2 of pure PK to 103.2 kJ/m2. The impact strength of the PK/PA6 blends with a 5:5 composition ratio reaches as high as 113 kJ/m2. The strong intermolecular force between PK and PA6 molecular chains enables the PA6 nanophase to cavitate to dissipate a significant amount of impact energy and effectively prevents the crack propagation or even terminates the cracks. The fracture mechanism of the PK/PA6 blends was further examined by the essential work of fracture method which proves that PK/PA6 blends show improved ability to prevent crack propagation. This work may deepen the understanding of polymer blend systems with strong hydrogen bonding interaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call