Abstract

Accurately simulating neurons with realistic morphological structure and synaptic inputs requires the solution of large systems of nonlinear ordinary differential equations. We apply model reduction techniques to recover the complete nonlinear voltage dynamics of a neuron using a system of much lower dimension. Using a proper orthogonal decomposition, we build a reduced-order system from salient snapshots of the full system output, thus reducing the number of state variables. A discrete empirical interpolation method is then used to reduce the complexity of the nonlinear term to be proportional to the number of reduced variables. Together these two techniques allow for up to two orders of magnitude dimension reduction without sacrificing the spatially-distributed input structure, with an associated order of magnitude speed-up in simulation time. We demonstrate that both nonlinear spiking behavior and subthreshold response of realistic cells are accurately captured by these low-dimensional models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.