Abstract
Harmful algal blooms responsible for mass mortalities of marine organisms have been rare in Hokkaido, northern Japan, although fish-killing blooms have been frequently reported from western Japanese coasts. In September–November 2021, a huge and prolonged cold-water bloom occurred along the Pacific coast of eastern Hokkaido, and was associated with intensive mortalities of sea urchin, fish, octopus, shellfish, etc. In this study, morphology and phylogeny of the dominant and co-occurring unarmored dinoflagellates of the Kareniaceae in the bloom were examined by using light microscopy, scanning electron microscopy and molecular phylogeny inferred from ITS and LSU rDNA (D1–D3) sequences. Morphological observation and molecular phylogeny showed that the dominant species was Karenia selliformis, with co-occurrences of other kareniacean dinoflagellates, Kr. longicanalis, Kr. mikimotoi, Karlodinium sp., Takayama cf. acrotrocha, Takayama tuberculata and Takayama sp. The typical cell forms of Kr. selliformis in the bloom were discoid, dorsoventrally flattened, and 35.3–43.6 (39.4 ± 2.1) µm in length, which was larger than the cell sizes in previous reports. Transparent cells of Kr. selliformis, lacking chloroplasts or having a few shrunken chloroplasts and oil droplets, were also found. Cells of Kr. selliformis showed morphological variation, but the species could be distinguished from other co-occurring Karenia species by the nucleus positioned in the hypocone and chloroplasts numerous (46–105) in number and small (2.9–4.6 µm) in diameter. Cell density of Kr. selliformis exceeding 100 cells mL−1 was recorded in the temperature range of 9.8–17.6 °C. The rDNA sequences determined from Kr. selliformis in the blooms of Hokkaido, Japan in 2021 were identical to those from the bloom in Kamchatka, Russia in 2020.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.