Abstract

We present a generalization of the known spirally polarized beams (SPBs) which we will call generalized spirally polarized beams (GSPBs). We characterize in detail both theoretically and experimentally the streamline morphologies of the GSPBs and their transformation by arbitrary polarization optical systems described by complex Jones matrices. We find that the description of the passage of GSPBs through a polarization system is equivalent to the stability theory of autonomous systems of ordinary differential equations. While the streamlines of the GSPB exhibit a spiral geometry, the streamlines of the output field may exhibit spirals, saddles, nodes, ellipses, and stars as well. Using a novel experimental technique based on a Sagnac interferometer, we have been able to generate in the laboratory each one of the different cases of GSPBs and record their corresponding characteristic streamline morphologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.