Abstract
Galaxy morphologies in clusters have undergone a remarkable transition over the past several billion yr. Distant clusters at z ~ 0.4 are filled with small spiral galaxies, many of which are disturbed and show evidence of multiple bursts of star formation. This population is absent from nearby clusters, where spheroidals comprise the faint end of the luminosity function. Our numerical simulations follow the evolution of disk galaxies in a rich cluster resulting from encounters with brighter galaxies and the cluster's tidal field, or galaxy harassment. After a bursting transient phase, they undergo a complete morphological transformation from disks to spheroidals. We examine the remnants and find support for our theory in detailed comparisons of the photometry and kinematics of the spheroidal galaxies in clusters. Our model naturally accounts for the intermediate-age stellar population seen in these spheroidals, as well as for the trend in the dwarf-to-giant ratio with cluster richness. The final shapes are typically prolate and are flattened primarily by velocity anisotropy. Their mass-to-light ratios are in the range 3-8, in good agreement with observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.