Abstract

ABSTRACTElectrospun nanocomposites of poly(ε‐caprolactone) (PCL) incorporated with PCL‐grafted cellulose nanocrystals (PCL‐g‐CNC) were produced. PCL chains were grafted from cellulose nanocrystals (CNC) surface by ring‐opening polymerization. Grafting was confirmed by infrared spectroscopy (FTIR) and thermogravimetric analyses (TGA). The resulting PCL‐g‐CNC were then incorporated into a PCL matrix at various loadings. Homogeneous nanofibers with average diameter decreasing with the addition of PCL‐g‐CNC were observed by scanning electron microscopy (SEM). PCL‐g‐CNC domains incorporated into the PCL matrix were visualized by transmission electron microscopy (TEM). Thermal and mechanical properties of the mats were analyzed by differential scanning calorimetry (DSC), TGA and dynamic mechanical analysis (DMA). The addition of PCL‐g‐CNC into the PCL matrix caused changes in the thermal behavior and crystallinity of the electrospun fibers. Significant improvements in Young's modulus and in strain at break with increasing PCL‐g‐CNC loadings were found. These results highlighted the great potential of cellulose nanocrystals as a reinforcement phase in electrospun PCL mats, which can be used as biomedical materials. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43445.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.