Abstract

Pure and chromium doped titanium dioxide (TiO2) thin films at different atomic percentages (0.5%, 1.3% and 2.9%) have been elaborated on ITO/Glass substrates by sol–gel and spin–coating methods using titanium (IV) isopropoxide as a precursor. The surface morphology of films was investigated by scanning electron microscopy (SEM) and Atomic Force Microscopy (AFM), the structure was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and high resolution transmission microscopy (HRTEM). SEM and HRTEM show homogenous and polycrystalline films. XRD patterns indicate a phase transition from anatase to anatase-rutile leading to expand the absorption band of TiO2 molecules around 520cm−1 in FTIR spectra. The optical constants such as the refractive index (n), the extinction coefficient (K) and the band gap (Eg) as well as the film thickness are determined using spectroscopic ellipsometry technique and Fourouhi–Blommer dispersion model. Results show three major changes; (i) the thickness of pure TiO2 layer is 54nm, which linearly decreases when the layer is doped with chromium and reaches 33nm for a doping concentration of 2.9%, (ii) the band gap energy (Eg) is also linearly reduced from 3.24eV to 2.80eV when the Cr-doping agent increases, and, (iii) a phase transition from anatase to anatase-rutile is observed causing an increase in values of n(λ) for wavelength greater than 350nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call