Abstract

We report on the growth of non-polar a-plane ZnO by CVD on r-plane-sapphire-wafers, a-plane GaN-templates and a-plane ZnO single-crystal substrates. Only the homoepitaxial growth approach leads to a Frank–van-der–Merwe growth mode, as shown by atomic force microscopy. The X-ray-diffraction spectra of the homoepitaxial thin films mirror the excellent crystalline quality of the ZnO substrate. The morphological and the structural quality of the homoepitaxial films is comparable to the best results for the growth on c-plane ZnO-substrates. The impurity incorporation, especially of group III elements, seems to be reduced when growing on the non-polar a-plane surface compared to the c-plane films as demonstrated by secondary ion mass spectrometry (SIMS). Optical properties have been investigated using low temperature photoluminescence measurements. We employed capacitance–voltage measurements ( C– V) to measure the background carrier density and its profile from substrate/film interface throughout the film to the surface. In thermal admittance spectroscopy (TAS) specific traps could be distinguished, and their thermal activation energies and capture cross sections could be determined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call