Abstract
A hybrid nanocomposite based on ethylene propylene diene monomer/carboxylated styrene-butadiene rubber (EPDM/XSBR) blend with different concentrations (0–7 phr) of multiwall carbon nanotube (MWCNT) was prepared on a two-roll mill. The role of grafted maleic anhydride (EPDM-g-MA) as compatibilizer and the effect of different concentrations of MWCNT on mechanical properties, morphology, rheological and curing characteristics of nanocomposites were investigated. The curing behavior of the prepared nanocomposites was studied using a rheometer. Also, the microstructure of nanocomposites was observed using TEM. By increasing the MWCNT concentration in the compatible blends, the curing time and scorch time of the blends decreased, while the maximum and minimum torque increased. Failure surface morphology studies showed that the existence of EPDM-g-MAH compatibilizer improved the distribution of MWCNT within the polymer matrix and uniform distribution of MWCNT with a small amount of aggregation was obtained. On the other hand, the presence of MWCNT in the matrix led to a sharper surface of the fracture. Also, mechanical properties such as modulus, tensile strength, hardness, fatigue, resilience and elongation-at-break for compatible EPDM/XSBR nanocomposite showed better results than those for incompatible composite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Polymer Analysis and Characterization
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.