Abstract

AbstractThe formation mechanism and morphology regulation mechanism of tubular ferrous oxalate were investigated by density functional theory. The calculation results showed that the pH value of the reaction solution changed from slightly alkaline to acidic was an important condition for the formation of tubular ferrous oxalate. The size and dispersion of ferrous oxalate can be controlled by introducing Na+ and ethylene glycol (EG) into the reaction system. Guided by theoretical calculations, using sodium oxalate as material to guarantee the initial solution to be slightly basic, while also introducing Na+. Regular tubular ferrous oxalate was successfully obtained by using different ratios of EG and H2O as reaction solution and adjusting pH values at different stages, verified the rationality of the theoretical calculation results. The tubular ferric oxide was obtained by thermal decomposition using tubular ferrous oxalate as the precursor, and the electrochemical performance test results showed that this material is a potential electrode material for supercapacitors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.