Abstract
In this paper we establish a relationship between regularization theory and morphological shared-weight neural networks (MSNN). We show that a certain class of morphological shared-weight neural networks with no hidden units can be viewed as regularization neural networks. This relationship is established by showing that this class of MSNNs are solutions of regularization problems. This requires deriving the Fourier transforms of the min and max operators. The Fourier transforms of min and max operators are derived using generalized functions because they are only defined in that sense.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.