Abstract
Mesoporous silica-based particles are of potential interest for the development of novel therapeutic targeted delivery vehicles. Their ability to load and release large quantities of active pharmaceutical products with varying properties, combining controlled and targeted release functions make them unique amongst nanotechnology-based carrier systems. In this study, nanoporous folic acid-templated materials (NFM-1) were prepared and the synthetic strategies for the control of textural and morphology properties of NFM-1 are described. The potential biocompatibility of NFM-1 particles with different morphology (gyroid shaped, fibers and rod-shaped) was assessed using a panel of human cell lines. The results reveal that NFM-1 morphology has an impact on cell viability such that particles showing higher aspect ratios possess increased cytotoxicity. These studies provide useful information for the development of novel mesoporous materials for biomedical applications, including cell-specific drug delivery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Nanomedicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.