Abstract

Morphological plasticity of ectomycorrhizal (EcM) short roots (known also as first and second order roots with primary development) allows trees to adjust their water and nutrient uptake to local environmental conditions. The morphological traits (MTs) of short-living EcM roots, such as specific root length (SRL) and area, root tip frequency per mass unit (RTF), root tissue density, as well as mean diameter, length, and mass of the root tips, are good indicators of acclimation. We investigated the role of EcM root morphological plasticity across the climate gradient (48–68°N) in Norway spruce (Picea abies (L.) Karst) and (53–66°N) birch (Betula pendula Roth., B. pubescens Ehrh.) forests, as well as in primary and secondary successional birch forests assuming higher plasticity of a respective root trait to reflect higher relevance of that characteristic in acclimation process. We hypothesized that although the morphological plasticity of EcM roots is subject to the abiotic and biotic environmental conditions in the changing climate; the tools to achieve the appropriate morphological acclimation are tree species-specific. Long-term (1994–2010) measurements of EcM roots morphology strongly imply that tree species have different acclimation-indicative root traits in response to changing environments. Birch EcM roots acclimated along latitude by changing mostly SRL [plasticity index (PI) = 0.60], while spruce EcM roots became adjusted by modifying RTF (PI = 0.68). Silver birch as a pioneer species must have a broader tolerance to environmental conditions across various environments; however, the mean PI of all MTs did not differ between early-successional birch and late-successional spruce. The differences between species in SRL, and RTF, diameter, and length decreased southward, toward temperate forests with more favorable growth conditions. EcM root traits reflected root-rhizosphere succession across forest succession stages.

Highlights

  • The development of an efficient root system is necessary for trees to ensure sufficient nutrient uptake in various conditions

  • Silver birch as a pioneer species must have a broader tolerance to environmental conditions across various environments; the mean plasticity index (PI) of all morphological traits (MTs) did not differ between early-successional birch and late-successional spruce

  • MATERIALS AND METHODS In order to analyse the morphological plasticity of EcM roots of an early-successional and a late-successional tree species, we compiled a database of morphological characteristics measured for EcM roots originating from 14 Norway spruce (Picea abies) and 30 birch (Betula pendula and B. pubescens) stands, partly published earlier (Supplementary Tables 1, 2)

Read more

Summary

Introduction

The development of an efficient root system is necessary for trees to ensure sufficient nutrient uptake in various conditions. Trees must acclimate by modifying either the biomass of fine roots or the morphology and physiological activity of nutrient absorbing root tips or both (Lõhmus et al, 2006). Morphological plasticity of roots with primary development (generally first (youngest) and second branching order roots) is the fastest mechanism for root acclimation in trees. Morphological plasticity of roots within species can be defined as the response range of root traits to different environments. The traits of roots with primary structure are important for optimizing the mineral nutrition of the plant (Curt and Prévosto, 2003; Comas and Eissenstat, 2004) they may vary considerably within a family, a genus, and even within a species (Ostonen et al, 2007a,b; Francini and Sebastiani, 2010), and with tree age (Rosenvald et al, 2011a, 2013)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call