Abstract

During normal development of retinal ganglion cells when the axons are growing, transient dendritic spines have been observed. Similar dendritic spine-like processes are also exhibited by retinal ganglion cells undergoing axonal regeneration into a peripheral nerve grafted to the damaged optic axons. Here we show, using the intracellular injection of Lucifer Yellow, that when a segment of peripheral nerve is transplanted to the vitreous body, a procedure which induces ectopic sprouting of axon-like processes from the cell bodies and dendrites of some retinal ganglion cells, similar spine-like processes appear on the dendrites of cells with ectopic sprouts. Quantitative analysis indicated that there were significant changes with posttransplantation survival time in the distributions of spine-like processes and axon-like processes on these sprouting retinal ganglion cells following the intravitreal transplantation of a piece of peripheral nerve. The remodelling of the spine-like processes and axon-like processes correlated with one another suggesting that plastic changes can occur in certain dendritic subcompartments independent of the growth activity of the other dendritic subcompartments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call