Abstract

Understanding is currently limited of the biological processes underlying the responses of modular organisms to climate change and the potential to adapt through morphological plasticity related to their modularity. Here, we investigate the effects of ocean acidification and seawater warming on the growth, life history and morphological plasticity in the modular bryozoan Calpensia nobilis using transplantation experiments in a shallow Mediterranean volcanic CO2 vents system that simulates pH values expected for the year 2100. Colonies exposed at vent sites grew at approximately half the rate of those from the control site. Between days 34 and 48 of the experiment, they reached a possible ‘threshold’, due to the combined effects of exposure time and pH. Temperature did not affect zooid length, but longer zooids with wider primary orifices occurred in low pH conditions close to the vents. Growth models describing colony development under different environmental scenarios suggest that stressed colonies of C. nobilis reallocate metabolic energy to the consolidation and strengthening of existing zooids. This is interpreted as a change in life-history strategy to support persistence under unfavourable environmental conditions. Changes in the skeletal morphology of zooids evident in C. nobilis during short-time (87 days) exposure experiments reveal morphological plasticity that may indicate a potential to adapt to the more acidic Mediterranean predicted for the future.

Highlights

  • Understanding is currently limited of the biological processes underlying the responses of modular organisms to climate change and the potential to adapt through morphological plasticity related to their modularity

  • We investigate the effects of ocean acidification and seawater warming on the growth, life history and morphological plasticity in the modular bryozoan Calpensia nobilis using transplantation experiments in a shallow Mediterranean volcanic CO2 vents system that simulates pH values expected for the year 2100

  • Colony growth was fairly constant throughout the study period, with the exception of the time interval between days 48 and 57 when colonies showed a growth of 3.29 cm2

Read more

Summary

Objectives

The aim of the current paper is to investigate the effects of OA and SW on the skeletal morphology of the Mediterranean bryozoan Calpensia nobilis (Esper, 1796)

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.