Abstract

Saline lands are characterized by salinity and nutrient deficiency and there is an ever increasing need for economical, adaptable plant species to rejuvenate these lands. In this study, we determined the suitability and tolerance of Euphorbia lathyris L. (Caper spurge), a well-known biofuel plant, as a sustainable candidate to colonize saline lands. We investigated the germination rate, seedling growth, solute change and anti-oxidative enzyme activities etc. under salt stress conditions. Our results showed that Caper spurge seeds prefer to germinate under nonsaline environments and high salt stress induced temporary dormancy during germination, but did not completely hamper the viability of the seeds. The seedling biomass increased without any visible distress symptoms in the presence of NaCl not over 171 mM. Further increase in NaCl concentration had a negative impact on the seedling growth. These demonstrate that Caper spurge seedlings have the potential to grow in saline lands. The salinity tolerance of Caper spurge seedlings was closely associated with the regional distribution of Na+ in roots, stable absorption of Ca2 + , K+ and Mg2 + , accumulation of organic solutes, and increased activity of superoxide dismutase (SOD) and catalase (CAT) enzymes. However, excessive accumulation of Na+, sharp increase of superoxide (O2 −), H2O2, malonaldehyde (MDA) and cell membrane leakage, reduction of osmoprotectants, and decreased activities of CAT and ascorbate peroxidase (APX) etc. under high salinity might be the reasons for the restrained seedling growth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call