Abstract

The development of nanostructured polymeric systems containing directionally continuous poly(ionic liquid) (poly(IL)) domains has considerable implications toward a range of transport-dependent, energy-based technology applications. The controlled, synthetic integration of poly(IL)s into block copolymer (BCP) architectures provides a promising means to this end, based on their inherent ability to self-assemble into a range of defined, periodic morphologies. In this work, we report the melt-state phase behavior of an imidazolium-containing alkyl–ionic BCP system, derived from the sequential ring-opening metathesis polymerization (ROMP) of imidazolium- and alkyl-substituted norbornene monomer derivatives. A series of 16 BCP samples were synthesized, varying both the relative volume fraction of the poly(norbornene dodecyl ester) block (fDOD = 0.42–0.96) and the overall molecular weights of the block copolymers (Mn values from 5000–20 100 g mol–1). Through a combination of small-angle X-ray scattering (SAXS) and dynamic rheology, we were able to delineate clear compositional phase boundaries for each of the classic BCP phases, including lamellae (Lam), hexagonally packed cylinders (Hex), and spheres on a body-centered-cubic lattice (SBCC). Additionally, a liquid-like packing (LLP) of spheres was found for samples located in the extreme asymmetric region of the phase diagram, and a persistent coexistence of Lam and Hex domains was found in lieu of the bicontinuous cubic gyroid phase for samples located at the intersection of Hex and Lam regions. Thermal disordering was opposed even in very low molecular weight samples, detected only when the composition was highly asymmetric (fDOD = 0.96). Annealing experiments on samples exhibiting Lam and Hex coexistence revealed the presence of extremely slow transition kinetics, ultimately selective for one or the other but not the more complex gyroid phase. In fact, no evidence of the bicontinuous network was detected over a 2 month annealing period. The ramifications of these results for transport-dependent applications targeting the use of highly segregated poly(IL)-containing BCP systems are carefully considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.