Abstract

BackgroundPrevious studies have demonstrated that the clear morphological differences among vertebrae across the presacral column are accompanied by heterogeneous functional signals in vertebral shape. Further, several lines of evidence suggest that the mammalian axial skeleton is a highly modular structure. These include its composition of serial units, a trade-off between high shape variance and strong conservation of vertebral count, and direct association of regions with anterior expression sites of Hox genes. Here we investigate the modular organisation of the presacral vertebral column of modern cats (Felidae, Carnivora, Mammalia) with pairwise comparisons of vertebral shape covariation (i.e. integration) and evaluate our results against hypotheses of developmental and functional modularity. We used three-dimensional geometric morphometrics to quantify vertebral shape and then assessed integration between pairs of vertebrae with phylogenetic two-block partial least square analysis (PLS).ResultsSix modules were identified in the pairwise analyses (vertebrae included are designated as ‘C’ for cervical, ‘T’ for thoracic, and ‘L’ for lumbar): an anterior module (C1 to T1); a transitional module situated between the last cervicals and first thoracics (C6 to T2); an anterior to middle thoracic set (T4 to T8); an anticlinal module (T10 and T11); a posterior set composed of the last two thoracics and lumbars (T12 to L7); and a module showing covariation between the cervicals and the posterior set (T12 to L7). These modules reflect shared developmental pathways, ossification timing, and observed ecological shape diversification in living species of felids.ConclusionsWe show here that patterns of shape integration reflect modular organisation of the vertebral column of felids. Whereas this pattern corresponds with hypotheses of developmental and functional regionalisation in the axial skeleton, it does not simply reflect major vertebral regions. This modularity may also have permitted vertebral partitions, specifically in the posterior vertebral column, to be more responsive to selection and achieve higher morphological disparity than other vertebral regions.

Highlights

  • Previous studies have demonstrated that the clear morphological differences among vertebrae across the presacral column are accompanied by heterogeneous functional signals in vertebral shape

  • Regionalisation of the vertebral column can be observed in amniotes in general [10], the mammalian axial skeleton shows the greatest differentiation in regional vertebral shape [10, 15,16,17,18,19,20]

  • In light of the results presented here, the ‘traditional regions’ hypothesis (i.e. ‘the cervical, thoracic and lumbar regions in the felid vertebral column form discrete morphological modules’) and the ‘cervicothoracic and lumbar modules’ hypothesis (i.e. ‘two modules composed of multiple vertebrae that share common allometric patterns: an anterior cervicothoracic and a lumbar module’) could be rejected or considered insufficiently explanatory

Read more

Summary

Introduction

Previous studies have demonstrated that the clear morphological differences among vertebrae across the presacral column are accompanied by heterogeneous functional signals in vertebral shape. Several lines of evidence suggest that the mammalian axial skeleton is a highly modular structure These include its composition of serial units, a trade-off between high shape variance and strong conservation of vertebral count, and direct association of regions with anterior expression sites of Hox genes. With its serial organisation and composition of vertebral units, distinguishable morphological differences among regions (cervical, thoracic, and lumbar), and direct association of those regions with expression sites of genes in the Hox family, the presacral axial skeleton would appear to encapsulate the concepts of regionalisation and modularity [4, 10,11,12,13,14]. Rather than being the target of selection themselves, highly fixed vertebral numbers in mammals may reflect developmental constraints related to the muscularisation of the diaphragm and the advantages of involving the lumbar region in abdomen expansion during inspiration and in sagittal bending during locomotion [6, 22]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call