Abstract

We computed by a Monte Carlo method derived from the solid on solid model, the thermal relaxation of a polycrystalline thin film deposited on a Penrose lattice. The thin film was modeled by a 2-dimensional array of elementary domains, which have each a given height. During the Monte Carlo process, the height of each of these elementary domains is allowed to change as well as their crystallographic orientation. After equilibrium is reached at a given numerical temperature, all elementary domains have changed their orientation into the same one and small islands appear, preferentially on the domains of the Penrose lattice located in the center of heptagons. This method is a numerical approach to study the influence of the substrate and its defects on the islanding process of polycrystalline films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.