Abstract

The present study aims to explore and bring out morphological insights into the prior-liquefaction, liquefaction, and post-liquefaction response of sands with geotextile inclusions. For this, a series of multi-stage drained constant volume simple shear tests with different cyclic stress ratios (CSR ranging from 0.1125 to 0.225) and different frequencies (f of 0.2 and 1.0 Hz) were carried out on completely dry specimens constituted with granular materials of three distinct grain morphologies (rounded, subrounded, and angular) reinforced with a nonwoven geotextile. The study also consists of morphological quantifications through image analysis algorithms and direct shear tests on sand-geotextile interfaces. Test results revealed that the inclusion of geotextile increased the liquefaction resistance and post-liquefaction shear strength of all the materials, irrespective of their particle morphology. However, the beneficial effects are more in the case of specimens constituted with angular particles. The effect of loading frequency on the response is also established. The interlocking and ploughing tendency of the angular particles leads to the mobilization of the maximum tensile strength of geotextile, which enhances the additional confinement and prevents the lateral movement of particles, thereby providing the maximum benefit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call