Abstract

Abstract The spatiotemporal distribution of snow affects hydrological and climatological processes at different scales. Accordingly, quantifying geometric features of snow-cover patterns is important, providing a valuable complement for snow water equivalent (SWE) modelling. This study on satellite-based morphological analysis originally uses two types of geometric indexes: (1) MN, Minkowski numbers (area (MN1), perimeter (MN2), Euler number (MN3)), and (2) CL, average chord length, to describe the morphology of Sentinel-2-derived snow-covered areas (SCAs), within the high-alpine site Zugspitze for a 5 year period. Results indicate that they capture the seasonal variability of snow-cover patterns, particularly during accumulation and ablation. Being to some degree independent from each other, MN2, MN3 and CL provide additional information upon shape, connectivity and length scale of snow cover, compared to most used indexes (e.g. fractional SCA). Correlation values up to +0.7 for MN2, +0.58 for MN3 and +0.46 for CL were observed with selected topographic characteristics, suggesting a close connection between geometric features of snow cover and ground features. Comparing in situ SWE measurements with MN and CL shows a correlation between −0.5 and +0.5. These indexes can hence be applied in combination with in situ data and/or modelling approaches to improve spatially distributed SWE in high-alpine catchments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.