Abstract

The quantitative analysis of biomass is essential for the research and application of moving bed biofilm reactors (MBBRs). However, the difficulty in measuring the attached growing biomass hinders the quantitative analysis of biofilm processes. In this study, a pilot-scale MBBR system was established to investigate biofilm evolution. The quantity of active heterotrophic and autotrophic biomass was measured throughout the entire culturing process. The total active biomass reached 250 mg COD/m2 when the biofilm attachment and detachment were balanced, and the corresponding autotrophic biomass contributes to as high as 17 % of the total biomass. Furthermore, quantitative image analysis was performed to obtain the thickness and morphological data of the biofilm evolution. Multivariate regression models were constructed based on the morphological data, which provided satisfactory prediction accuracy for the biofilm thickness and maturation. The most suitable carrier spots for biomass quantification and biofilm maturation were suggested. This work provided the life-cycle information of biofilm quantity and morphology of the MBBR, which contributes to the quantitative understanding of biofilm evolution at MBBRs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.