Abstract

AbstractThe fracture toughness of commercial linear low‐density polyethylenes (LLDPE) has been found to be extraordinarily high relative to commercial low‐density (LDPE) and high‐density (HDPE) polyethylenes in previously reported investigations. The present investigation shows that this extraordinary fracture toughness cannot be explained by differences in molecular structure variables, such as molecular weight, long‐chain and short‐chain branching, fractional crystallinity, and comonomer content. Instead, the presence of a second soft phase, which was extractable with a weak solvent, in a hard semicrystalline matrix was discovered by morphological investigations of LLDPE resins. This second phase arises from the extreme compositional heterogeneity of the copolymers which comprise these LLDPE resins. No evidence for a similar morphological entity was found in LDPE and HDPE resins. This finding provides persuasive evidence that this very‐low‐crystallinity second phase performs a function similar to that of the rubberlike second phase in other high impact resins and, thus, leads to the observed extraordinary fracture toughness of LLDPE resins. Evidence for the nature and existence of this second phase is given from temperature‐rising elution fractionation and scanning electron microscopy investigations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.