Abstract

The incorporation of charged biomacromolecules is widely found in biomineralization. To investigate the significance of this biological strategy for mineralization control, gelatin-incorporated calcite crystals grown from gelatin hydrogels with different charge concentrations along the gel networks are examined. It is found that the bound charged groups on gelatin networks (amino cations, gelatin-NH3 + and carboxylic anions, gelatin-COO- ) play crucial roles in controlling the single-crystallinity and the crystal morphology. And the charge effects are greatly enhanced by the gel-incorporation because the incorporated gel networks force the bound charged groups on them to attach to crystallization fronts. In contrast, ammonium ions (NH4 + ) and acetate ions (Ac- ) dissolve in the crystallization media do not exhibit the similar charge effects because the balance of attachment/detachment make them more difficult to be incorporated. Employing the revealed charge effects, the calcite crystal composites with different morphologies can be flexibly prepared.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.