Abstract

Employing high-voltage Ni-rich cathodes in Li metal batteries (LMBs) requires stabilization of the electrode/electrolyte interfaces at both electrodes. A stable solid-electrolyte interphase (SEI) and suppression of active material pulverization remain the greatest challenges to achieving efficient long-term cycling. Herein, studies of NMC622 (1 mAh cm-2) cathodes were performed using highly concentrated N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide (C3mpyrFSI) 50 mol % lithium bis(fluorosulfonyl)imide (LiFSI) ionic liquid electrolyte (ILE). The resulting SEI formed at the cathode enabled promising cycling performance (98.13% capacity retention after 100 cycles), and a low degree of ion mixing and lattice expansion was observed, even at an elevated temperature of 50 °C. Fitting of acquired impedance spectra indicated that the SEI resistivity (RSEI) had a low and stable contribution to the internal resistivity of the system, whereas active material pulverization and secondary grain isolation significantly increased the charge transfer resistance (RCT) throughout cycling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.