Abstract

The particular microstructure of Ti-6Al-4V fabricated by additive manufacturing (AM) makes it exhibit a different corrosion resistance compared with that of the conventional forged Ti-6Al-4V. Here we utilize the electrochemical impedance (EIS) and potentiodynamic polarization (Tafel) to evaluate the electrochemical dissolution behavior in runway deicing fluids (RDF) of three kinds of Ti-6Al-4V alloy, which are respectively fabricated by forging, electron beam melting (EBM), and selective laser melting (SLM). The microstructure and electrochemical results suggest that EBM samples have a better corrosion resistance than others', which is attributed to an appropriate proportion of α-lath width and the volume fraction of β phase. A higher relative proportion of TiO2 is formed on surface, resulting in the fine-lamellar structure with a higher density of grain boundaries. Besides, the corrosion resistance anisotropy of AMed Ti-6Al-4V samples is ascribed to the existence of β columnar gains. In addition, the acicular martensite α′ phase with metastable structure leads to the worst corrosion resistance of SLMed Ti-6Al-4V samples. This work enriches the corrosion resistance of Ti-6Al-4V alloy in strong electrolyte solutions, which helps to promote the service performance of aviation titanium alloys in harsh environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.