Abstract

Layered transition-metal dichalcogenides (TMDs) are valued for their electrocatalytic properties toward the hydrogen-evolution reaction (HER) and oxygen-reduction reaction (ORR). One effective strategy to activate the electrocatalytic properties of TMDs is through doping. The optimistic outlook of doped-MoS2 as an electrocatalyst witnessed in previous reports spurred us to examine the effect of doping WSe2 with Group 5 transition-metal species, namely V, Nb, and Ta, in aspects of inherent electroactivities and catalysis. Apart from the mild reduction signal unique to the Group 5 transition-metal dopants, the Group 5 transition-metal-doped WSe2 materials are found to possess largely identical inherent electrochemistry to the undoped WSe2 with a characteristic anodic peak. Living up to expectations, the Group 5 transition-metal-doped WSe2 materials exhibit improved electrocatalytic HER efficiency, as evident by the lower HER overpotentials and Tafel slopes relative to undoped WSe2 . After doping with V, Nb, or Ta species, an increased number of active sites is observed given the distinct changes in morphology from thick bulky pieces in undoped WSe2 to thinner fragments in doped WSe2 . Although undoped WSe2 exists in the semiconducting 2H phase, the Group 5 transition-metal-doped WSe2 materials are dominated by the metallic 1T phase. Doping WSe2 with V, Nb, or Ta stabilizes the catalytic 1T phase and appears to induce the transition from the 2H to 1T phase. In contrast to the enhanced HER performance of WSe2 upon doping, Group 5 transition-metal dopants proved futile in activating the ORR electrocatalytic behavior of WSe2 , for which the ORR efficiency is unchanged. Therefore, these findings facilitate the understanding of the role of Group 5 transition-metal dopants in the electrochemical and catalytic properties of WSe2 relative to their morphological features and provide an evaluation of the efficacy of doping TMDs in electrocatalytic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.