Abstract

Ptychopariid trilobites from the Marjumiid biomere of Laurentia underwent a statistically significant morphological diversification that is concordant with proposed adaptive radiations of trilobites in each of the Cambrian biomeres. An analysis of a subset consisting of the biomere's most characteristic taxa, the Asaphiscacea, Raymondinacea, and Marjumiacea, also illustrates this morphological diversification. In detail, the total data set and subset show a limited range of morphologies near the base of the biomere and a large increase in range in the upper portion of the biomere.Regional assemblages from the Appalachians, Great Basin, and Texas were also studied to determine if they too show the larger-scale macroevolutionary patterns of trilobites from Laurentia as a whole. The regional assemblages illustrate similar, butnot identical, morphological diversifications, which are also similar to the overall Laurentian pattern. Subsets of the characteristic taxa also show this diversification. These results suggest that regional assemblages can be used to investigate these larger-scale macroevolutionary patterns.Causal mechanisms for the diversification patterns are not clear. Potential mechanisms include: (1) endemic evolution of new morphologies in Laurentia; (2) migration of new morphologies, including intra- and inter-continental migrations; and (3) environmental controls over the distribution of morphologies. Likely causes for the morphological diversification and its similarity among regions probably include aspects of all three mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call