Abstract

Studies of deep-sea biodiversity focus almost exclusively on geographic patterns of α-diversity. Few include the morphological or ecological properties of species that indicate their actual roles in community assembly. Here, we explore morphological disparity of shell architecture in gastropods from lower bathyal and abyssal environments of the western North Atlantic as a new dimension of deep-sea biodiversity. The lower bathyal-abyssal transition parallels a gradient of decreasing species diversity with depth and distance from land. Morphological disparity measures how the variety of body plans in a taxon fills a morphospace. We examine disparity in shell form by constructing both empirical (eigenshape analysis) and theoretical (Schindel's modification of Raup's model) morphospaces. The two approaches provide very consistent results. The centroids of lower bathyal and abyssal morphospaces are statistically indistinguishable. The absolute volumes of lower bathyal morphospaces exceed those of the abyss; however, when the volumes are standardized to a common number of species they are not significantly different. The abyssal morphospaces are simply more sparsely occupied. In terms of the variety of basic shell types, abyssal species show the same disparity values as random subsets of the lower bathyal fauna. Abyssal species possess no evident evolutionary innovation. There are, however, conspicuous changes in the relative abundance of shell forms between the two assemblages. The lower bathyal fauna contains a fairly equable mix of species abundances, trophic modes, and shell types. The abyssal group is numerically dominated by species that are deposit feeders with compact unsculptured shells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call