Abstract

Convergent evolution can provide insights into the predictability of, and constraints on, the evolution of biodiversity. One striking example of convergence is seen in the ‘river dolphins’. The four dolphin genera that make up the ‘river dolphins’ (Inia geoffrensis, Pontoporia blainvillei, Platanista gangetica and Lipotes vexillifer) do not represent a single monophyletic group, despite being very similar in morphology. This has led many to using the ‘river dolphins’ as an example of convergent evolution. We investigate whether the skulls of the four ‘river dolphin’ genera are convergent when compared to other toothed dolphin taxa in addition to identifying convergent cranial and mandibular features. We use geometric morphometrics to uncover shape variation in the skulls of the ‘river dolphins’ and then apply a number of phylogenetic techniques to test for convergence. We find significant convergence in the skull morphology of the ‘river dolphins’. The four genera seem to have evolved similar skull shapes, leading to a convergent morphotype characterised by elongation of skull features. The cause of this morphological convergence remains unclear. However, the features we uncover as convergent, in particular elongation of the rostrum, support hypotheses of shared feeding mode or diet and thus provide the foundation for future work into convergence within the Odontoceti.

Highlights

  • Convergent evolution, or convergence, is the independent evolution of similar phenotypes in different lineages (Losos, 2011), producing taxa that are more similar than expected given their phylogenetic relatedness (Conway Morris, 2008)

  • Our results reveal that the river dolphins show significant convergence in the shape of their crania and mandibles when compared to other odontocete species

  • Our results corroborate those of other studies (Barroso, Cranford & Berta, 2012; McCurry et al, 2017a; Werth, 2006) and show that overall skull morphology of the river dolphins is significantly convergent, being more similar than expected given their phylogenetic relationships

Read more

Summary

Introduction

Convergent evolution, or convergence, is the independent evolution of similar phenotypes in different lineages (Losos, 2011), producing taxa that are more similar than expected given their phylogenetic relatedness (Conway Morris, 2008). Convergence is widespread (Conway Morris, 2003; McGhee, 2011) and continues to be a central concept in evolutionary biology through both its role in describing evolutionary patterns and in providing strong evidence for natural selection (Donley et al, 2004; Foote et al, 2015; Losos, 2011; Muschick, Indermaur & Salzburger, 2012). If the evolutionary forces that cause convergence are common, phenotypes of organisms may be predictable, constraining the diversity of living species (Conway Morris, 2003; Conway Morris, 2008; Losos, 2011).

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call