Abstract

Three different morphologies of ZnO nanostructures, such as nanospheres, nanorods, and nanoribbons, were controlled by tuning the ratio of the Zn2+ precursor to the 4VP monomer when polymerized in aqueous medium utilizing self-emulsion polymerization. The amphiphilic homopolymer (P4VP) acts as a template to form the ZnO/P4VP nanocomposite. The aspect ratio of the nanostructures is strongly dependent on the molar concentration of the Zn2+ precursor and becomes higher as its concentration increases. This results in different morphologies that are consistently repeatable. Pure ZnO was obtained from the ZnO/P4VP nanocomposites by calcination at 400 °C or by solvent washing. The calcination of the nanocomposties resulted in different morphologies, such as spherical, corolla shaped, and nanosheets. In addition, hexagonal nanoblocks, nanorods, and nanoribbons were observed when the polymer was removed from the nanocomposites by washing with chloroform. Removing polymer by solvent washing is a very easy, cost-eff...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.