Abstract

In this work, we first reported that the phase separation can take place both inside and outside of a multihollow-structured cross-linked seed microspheres swollen by styrene monomers in water during the radiation-induced seeded emulsion polymerization. The phase separation process in these two opposite directions will determine the morphology of final latex particles. First, sulfonated cross-linked polystyrene (SCPS) seed microspheres were swollen by styrene in water. Water will permeate into the SCPS seed microspheres during the swelling process, forced by the osmotic pressure produced by the strong hydrophilicity of the sulfonic acid groups. New aqueous phases are created and stabilized by the hydrophilic -SO3H groups, resulting in a multihollow structure of swollen SCPS seed microspheres. When the polymerization of styrene is induced by (60)Co γ-ray radiation, the phase separation of newly formed polystyrene phase will occur at the seed microsphere-water interface inside and/or outside of the SCPS seed microspheres through adjusting the diameter of seed microsphere, the content of cross-link agent, and the sulfonation degree of SCPS seed microspheres. As a result, SCPS latex particles with a variety of special morphologies, such as spherical multihollow, plum-like, and walnut-like latex particles were obtained. The results of this study provide not only a simple and interesting way to design and synthesize multihollow polymer latex particles with controllable surface morphologies but also a better understanding on phase separation mechanism during the swelling and polymerization of monomers in cross-linked amphiphilic polymer networks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call