Abstract

Control of the morphologies of polymer films and layers by addition of nanosize particles is a novel technique for design of nanomaterials and is also at the core of some important biological processes. In order to facilitate the analysis of experimental data and enable predictive engineering of such systems, solid theoretical understanding is necessary. We study theoretically and computationally the behavior of plane-grafted polymer layers (brushes) in athermal solvent, decorated with small nanoparticle inclusions, using mean field theory and coarse-grained simulations. We show that the morphology of such layers is very sensitive to the interaction between the polymers and the nanoparticles and to the nanoparticle density. In particular, the mean field model shows that for a certain range of parameters, the nanoparticles induce a sharp transition in the layer height, accompanied by a sharp increase in the number of adsorbed nanoparticles. At other parameter values, the layer height depends smoothly on the nanoparticle concentration. Predictions of the theoretical model are verified by Langevin dynamics simulations. The results of the paper are in qualitative agreement with experiments on in vitro models of biological transport and suggest strategies for morphological control of nanocomposite materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call