Abstract
The growth of GaN buffer layers of thickness 10–25 nm directly on 6H–SiC (0001) substrates was studied using low energy electron microscopy, atomic force microscopy and cross-sectional transmission electron microscopy. The Ga flux was supplied by an evaporative source, while the NH3 flux came from a seeded beam supersonic jet source. By monitoring the growth in situ and by suitably adjusting the Ga/NH 3 flux ratio, smooth basal-plane-oriented GaN layers were grown on hydrogen-etched SiC substrates at temperatures in the range of 600–700°C. The growth proceeds via nucleation of small flat islands at the step edges of the 6H–SiC (0001) substrate surface. The islands increase in size with a lateral-to-vertical growth ratio of ~10 and eventually coalesce into a quasicontinuous layer. A highly defective substrate surface was found to be detrimental to the growth of flat buffer layers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.